Abstract

Conventional material extrusion additive manufacturing is capable of building complex structures. Overhanging features require the use of support structures. Printing the support structure requires additional time and material. Conventional processes need time to remove support material and may lead to degraded surface finish. The use of support structures can be avoided by dynamically reorienting the build-platform. This paper presents a novel approach to build accurate thin shell parts using supportless extrusion-based additive manufacturing. We describe the layer slicing algorithm, the tool-path planning algorithm, and the neural network-based compensated trajectory generation scheme to use a 3 degree of freedom build-platform and a 3 degree of freedom extrusion tool to build accurate thin shell parts using two manipulators. Such thin shell parts cannot be built without supports by previous supportless AM processes. We illustrate the usefulness of our algorithms by building several thin shell parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.