Abstract

The Fourth Industrial Revolution represents the beginning of a profound change for the building sector. In the last decade, the perspective of shapes, materials, and construction techniques is evolving fast due to the additive manufacturing technology. On the other hand, even if the technology is growing fast and several 3D printed buildings are being developed worldwide, the potential of concrete 3D printing in building prefabrication remains unexplored. Consequently, the application of new digital fabrication technologies in the construction industry requires a redesign of the construction process and its components. This paper proposes a novel conception, design, and prototyping of a precast building envelope to be prefabricated with extrusion-based 3D concrete printing (3DCP). The new design and conception aim to fully exploit the potential of 3D printing for prefabricated components, especially in terms of dry assembly, speed of implementation, reusability, recyclability, modularity, versatility, adaptability, and sustainability. Beyond the novel conceptual design of precast elements, the research investigated the 3D printable cementitious material based on a magnesium potassium phosphate cement (MKPC), which was devised and tested to ensure good performances of the proposed component. Finally, a prototype has been realised in scale with additive manufacturing technology in order to verify the printability and to optimize the extruder path. This study leads us to believe that the combined use of prefabricated systems, construction automation, and innovative materials can decisively improve the construction industry’s sustainability in the future.

Highlights

  • The first robotics and automated systems for construction were developed in the 1960s

  • We propose the design and prototyping of a new prefabricated system for innovative building envelopes made with 3D printing

  • The new design and conception aim to fully exploit the potential of 3D printing for prefabricated components, including the dry assembly, speed of implementation, reusability, recyclability, modularity, versatility, adaptability, and sustainability

Read more

Summary

Introduction

The first robotics and automated systems for construction were developed in the 1960s. Since the technological progress in the construction industry has been very slow. Many other industrial sectors increased productivity and simultaneously increased efficiency. The application of robotics and automated systems to the construction industry has the potential to reduce costs, improving both productivity and quality [1]. Conventional construction techniques have reached maximum technological performance. In the scientific and technical world, the current objective aims to revolutionise the construction sectors’ techniques through the support of the digital fabrication [2,3]

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.