Abstract

Eukaryotic cells generate a diversity of actin filament networks in a common cytoplasm to optimally perform functions such as cell motility, cell adhesion, endocytosis and cytokinesis. Each of these networks maintains precise mechanical and dynamic properties by autonomously controlling the composition of its interacting proteins and spatial organization of its actin filaments. In this review, we discuss the chemical and physical mechanisms that target distinct sets of actin-binding proteins to distinct actin filament populations after nucleation, resulting in the assembly of actin filament networks that are optimized for specific functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call