Abstract

To identify wild and cultivated Gastrodia elata quickly and accurately, this study is the first to apply three-dimensional correlation spectroscopy (3DCOS) images combined with deep learning models to the identification of G. elata. The spectral data used for model building do not require any preprocessing, and the spectral data are converted into three-dimensional spectral images for model building. For large sample studies, the time cost is minimized. In addition, a partial least squares discriminant analysis (PLS-DA) model and a support vector machine (SVM) model are built for comparison with the deep learning model. The overall effect of the deep learning model is significantly better than that of the traditional chemometric models. The results show that the model achieves 100% accuracy in the training set, test set, and external validation set of the model built after 46 iterations without preprocessing the original spectral data. The sensitivity, specificity, and the effectiveness of the model are all 1. The results concluded that the deep learning model is more effective than the traditional chemometric model and has greater potential for application in the identification of wild and cultivated G. elata.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.