Abstract

Application programmers increasingly prefer distributed storage systems with strong consistency and distributed transactions (e.g., Google's Spanner) for their strong guarantees and ease of use. Unfortunately, existing transactional storage systems are expensive to use -- in part because they require costly replication protocols, like Paxos, for fault tolerance. In this paper, we present a new approach that makes transactional storage systems more affordable: we eliminate consistency from the replication protocol while still providing distributed transactions with strong consistency to applications.We present TAPIR -- the Transactional Application Protocol for Inconsistent Replication -- the first transaction protocol to use a novel replication protocol, called inconsistent replication, that provides fault tolerance without consistency. By enforcing strong consistency only in the transaction protocol, TAPIR can commit transactions in a single round-trip and order distributed transactions without centralized coordination. We demonstrate the use of TAPIR in a transactional key-value store, TAPIR-KV. Compared to conventional systems, TAPIR-KV provides better latency and throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.