Abstract

Classical configuration space (C-space) is often used in such a assumption that obstacles are static and robots have global knowledge of environment. Recently, there has been much more attention in multi-robot systems (MRS), unfortunately a MRS which have local sensing cannot meet the assumption. If it can be solved, the motion planning of the MRS benefits from previous motion planning algorithms in C-space. Toward resolving aforementioned problems, in the first place, we model the environment and robots as some sets of polygons, robots are unmanned ground vehicles (UGVs) with limited sensing range and can communicate with each other. Then a decentralized method is introduced by which two autonomous robots search environment and build C-space obstacles, while exchange and merge partial C-space generated by another robot every certain time interval until the whole C-space obstacles are established, it is similar to concurrent mapping and localization (CML), but we mainly focus on the algorithm of generating and merging C-space. Finally a simulated implementation demonstrates validity of our algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call