Abstract

The construction of secondary building units (SBUs) in versatile metal–organic frameworks (MOFs) represents a promising method for developing multi‐functional materials, especially for improving their sensitizing ability. Herein, we developed a dual small molecules auxiliary strategy to construct a high‐nuclear transition‐metal‐based UiO‐architecture Co16‐MOF‐BDC with visible‐light‐absorbing capacity. Remarkably, the N3‐ molecule in hexadecameric cobalt azide SBU offers novel modification sites to precise bonding of strong visible‐light‐absorbing chromophores via click reaction. The resulting Bodipy@Co16‐MOF‐BDC exhibits extremely high performance for oxidative coupling benzylamine (~100% yield) via both energy and electron transfer processes, which is much superior to that of Co16‐MOF‐BDC (31.5%) and Carboxyl Bodipy@Co16‐MOF‐BDC (37.5%). Systematic investigations reveal that the advantages of Bodipy@Co16‐MOF‐BDC in dual light‐absorbing channels, robust bonding between Bodipy/Co16 clusters and efficient electron‐hole separation can greatly boost photosynthesis. This work provides an ideal molecular platform for synergy between photosensitizing MOFs and chromophores by constructing high‐nuclear transition‐metal‐based SBUs with surface‐modifiable small molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call