Abstract
Abstract. There is an increasing demand for robust methods on urban sprawl monitoring. The steadily increasing number of high resolution and multi-view sensors allows producing datasets with high temporal and spatial resolution; however, less effort has been dedicated to employ very high resolution (VHR) satellite image time series (SITS) to monitor the changes in buildings with higher accuracy. In addition, these VHR data are often acquired from different sensors. The objective of this research is to propose a robust time-series data analysis method for VHR stereo imagery. Firstly, the spatial-temporal information of the stereo imagery and the Digital Surface Models (DSMs) generated from them are combined, and building probability maps (BPM) are calculated for all acquisition dates. In the second step, an object-based change analysis is performed based on the derivative features of the BPM sets. The change consistence between object-level and pixel-level are checked to remove any outlier pixels. Results are assessed on six pairs of VHR satellite images acquired within a time span of 7 years. The evaluation results have proved the efficiency of the proposed method.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.