Abstract

We report on the synthesis of three new sleeves and their incorporation in OSK rods. The structures of these sleeves are based on neo-inositol, terephthalaldehyde diacetals, and indacene. To quantify the influence of the sleeves on rod rigidity, we applied the worm-like chain (WLC) model on the new rods and found that this approach is rather disappointing. As the chief cause of this result, we assume that the rigidity of typical molecular rods largely exceeds the rigidity of polymers, which were successfully described by the WLC model. Alternatively, we suggest quantifying the rigidity of molecular rods by fitting an empirical function on the end-to-end distance distribution curve obtained by MD simulations. After checking various function types, the Levy-Martin function proved to be most suitable for this purpose. On the basis of this function, we defined the Levy-Martin parameter and suggest using this parameter for the characterization of the rigidity of molecular rods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.