Abstract

A new polar quaternary chalcogenide, Na8Mn2(Ge2Se6)2, has been synthesized using the building-block approach by reacting preformed Na6Ge2Se6 and MnCl2 at 750 °C. The structure consists of layers of [Na(1)Mn(Ge2Se6)]3– stacked perpendicular to the c-axis and sodium ions occupying the interlayer space. An indirect bandgap of 1.52 eV has been calculated using density functional theory, which is expectedly underestimated compared to the observed optical bandgap of 1.95 eV derived from diffuse reflectance spectroscopic measurements in the UV/Vis/NIR region. Magnetic measurements confirm the paramagnetic nature of Na8Mn2(Ge2Se6)2 with an experimental magnetic moment of 5.8 μB in good agreement with the theoretical spin only moment of 5.92 μB for high spin Mn2+. Na8Mn2(Ge2Se6)2 exhibits a potentially wide region of transparency in the measured range of 2.5–25 µm. Na8Mn2(Ge2Se6)2 shows a modest second-harmonic generation (SHG) response but with a high laser-induced damage threshold (LIDT) of ~9x AgGaSe2. Third harmonic generation (THG) measurements indicate that Na8Mn2(Ge2Se6)2 displays a high THG coefficient (1.9x AgGaSe2) at λ = 1800 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.