Abstract

Basin models are used to gain insights about a petroleum system, and to simulate geological processes required to form oil and gas accumulations. The focus of such simulations is usually on charge and timing-related issues, although uncertainty analysis about a wider range of parameters is becoming more common. Bayesian networks (BNs) are useful for decision making in geological prospect analysis and exploration. In this paper we propose a framework for merging these two methodologies: by doing so, we explicitly account for dependencies between the geological elements. The probabilistic description of the BN is trained by using multiple scenarios of Basin and Petroleum Systems Modelling (BPSM). A range of different input parameters are used for total organic content, heat flow, porosity and faulting to span a full categorical design for the BPSM scenarios. Given the consistent BN for trap, reservoir and source attributes, we demonstrate important decision-making applications, such as evidence propagation and the value of information. Supplementary material: Tables and figures of analyses and data are available at: www.geolsoc.org.uk/SUP18607 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.