Abstract
The introduction of the Google Speech Commands dataset accelerated research and resulted in a variety of new deep learning approaches that address keyword spotting tasks. The main contribution of this work is the building of an Arabic Speech Commands dataset, a counterpart to Google’s dataset. Our dataset consists of 12000 instances, collected from 30 contributors, and grouped into 40 keywords. We also report different experiments to benchmark this dataset using classical machine learning and deep learning approaches, the best of which is a Convolutional Neural Network with Mel-Frequency Cepstral Coefficients that achieved an accuracy of ∼98%. Additionally, we point out some key ideas to be considered in such tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.