Abstract

The cell wall constitutes a fundamental structural component of plant cells, providing them with mechanical resistance and flexibility. Mimicking this wall is a critical step in the conception of an experimental model of the plant cell. The assembly of cellulose/hemicellulose in the form of cellulose nanocrystals and xyloglucans as a representative model of the plant cell wall has already been mastered; however, these models lacked the pectin component. In this work, we used an engineered chimeric protein designed for bridging pectin to the cellulose/hemicellulose network, therefore achieving the assembly of complete cell wall mimics. We first engineered a carbohydrate-binding module from Ruminococcus flavefaciens able to bind oligogalacturonan, resulting in high-affinity polygalacturonan receptors with Kd in the micromolar range. A Janus protein, with cell wall gluing property, was then designed by assembling this carbohydrate-binding module with a Ralstonia solanacearum lectin specific for fucosylated xyloglucans. The resulting supramolecular architecture is able to bind fucose-containing xyloglucans and homogalacturonan, ensuring high affinity for both. A two-dimensional assembly of an artificial plant cell wall was then built first on synthetic polymer and then on the supported lipid bilayer. Such an artificial cell wall can serve as a basis for the development of plant cell mechanical models and thus deepen the understanding of the principles underlying various aspects of plant cells and tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call