Abstract
Alkali-metal-halide layers were constructed within Dion-Jacobson (DJ) layered perovskites by a two-step sequential intercalation method. Reductive intercalation with an alkali metal, followed by oxidative intercalation with chlorine gas, leads to the formation of the compounds, (A(2)Cl)LaNb(2)O(7) (A = Rb, Cs). Rietveld refinement of X-ray powder diffraction data shows that an alkali-metal-halide layer is formed between the perovskite blocks. The alkali-metal cation is eight-coordinate with four oxygens from the perovskite layer and four chlorides from the new halide layer; this environment is similar to cesium in the CsCl structure (B2). Thermal analysis indicates that these are low-temperature phases where decomposition begins by 400 degrees C. Details on the synthesis and characterization of this set of compounds are presented, and the general utility of this approach discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.