Abstract
In shockwave theory, the density, velocity and pressure jumps are derived from the conservation equations. Here, we address the physics of a weak shock the other way around. We first show that the density profile of a weak shockwave in a fluid can be expressed as a sum of linear acoustic modes. The shock so built propagates at the speed of sound and matter is exactly conserved at the front crossing. Yet, momentum and energy are only conserved up to order 0 in powers of the shock amplitude. The density, velocity and pressure jumps are similar to those of a fluid shock, and an equivalent Mach number can be defined. A similar process is possible in magnetohydrodynamics. Yet, such a decomposition is found impossible for collisionless shocks due to the dispersive nature of ion acoustic waves. Weakly nonlinear corrections to their frequency do not solve the problem. Weak collisionless shocks could be inherently nonlinear, non-amenable to any linear superposition. Or they could be non-existent, as hinted by recent works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.