Abstract
BackgroundThe sterile insect technique (SIT) has been successfully used in many pest management programs worldwide. Some SIT programs release both sexes due to the lack of genetic sexing strains or efficient sex separation methods but sterile females are ineffective control agents. Transgenic sexing strains (TSS) using the tetracycline-off control system have been developed in a variety of insect pests, from which females die by either of two commonly used lethal effectors: overexpression of the transcription factor tetracycline transactivator (tTA) or ectopic expression of a proapoptotic gene, such as head involution defective (hid). The lethality from tTA overexpression is thought to be due to “transcriptional squelching”, while hid causes lethality by induction of apoptosis. This study aims to create and characterize a TSS of Lucilia cuprina, which is a major pest of sheep, by combining both lethal effectors in a single transgenic strain.ResultsHere a stable TSS of L. cuprina (DH6) that carries two lethal effectors was successfully generated, by crossing FL3#2 which carries a female-specific tTA overexpression cassette, with EF1#12 which carries a tTA-regulated LshidAla2 cassette. Females with one copy of the FL3#2 transgene are viable but up to 99.8% of homozygous females die at the pupal stage when raised on diet that lacks tetracycline. Additionally, the female lethality of FL3#2 was partially repressed by supplying tetracycline to the parental generation. With an additional LshidAla2 effector, the female lethality of DH6 is 100% dominant and cannot be repressed by maternal tetracycline. DH6 females die at the late-larval stage. Several fitness parameters important for mass rearing such as hatching rate, adult emergence and sex ratio were comparable to those of the wild type strain.ConclusionsCompared to the parental FL3#2 strain, the DH6 strain shows stronger female lethality and lethality occurs at an earlier stage of development. The combination of two tTA-dependent lethal effectors could improve strain stability under mass rearing and could reduce the risk of resistance in the field if fertile males are released. Our approach could be easily adapted for other pest species for an efficient, safe and sustainable genetic control program.
Highlights
The sterile insect technique (SIT) has been successfully used in many pest management programs worldwide
The adult emergence ratio was 86.2, which is comparable to the parental FL3#2 line and double homozygous (DH) strains developed previously with embryo tTA driver lines (Table 1)
When raised on diet without tetracycline, we previously found that females with one copy of FL3#2 were viable but 99.9% of females with two copies of the transgene died at the pupal stage [20]
Summary
The sterile insect technique (SIT) has been successfully used in many pest management programs worldwide. Transgenic sexing strains (TSS) using the tetracycline-off control system have been developed in a variety of insect pests, from which females die by either of two commonly used lethal effectors: overexpression of the transcription factor tetracycline transactivator (tTA) or ectopic expression of a proapoptotic gene, such as head involution defective (hid). Binding of tTA to tetO activates hid expression causing female embryo lethality due to high levels of apoptosis [9, 11, 12]. For both systems, only females die when the tetracycline is absent from the diet. The TSS can be maintained in the SIT factory by supplementing the mass rearing diet with tetracycline
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.