Abstract

Abstract Techniques based on randomized response enable the collection of potentially sensitive data from clients in a privacy-preserving manner with strong local differential privacy guarantees. A recent such technology, RAPPOR [12], enables estimation of the marginal frequencies of a set of strings via privacy-preserving crowdsourcing. However, this original estimation process relies on a known dictionary of possible strings; in practice, this dictionary can be extremely large and/or unknown. In this paper, we propose a novel decoding algorithm for the RAPPOR mechanism that enables the estimation of “unknown unknowns,” i.e., strings we do not know we should be estimating. To enable learning without explicit dictionary knowledge, we develop methodology for estimating the joint distribution of multiple variables collected with RAPPOR. Our contributions are not RAPPOR-specific, and can be generalized to other local differential privacy mechanisms for learning distributions of string-valued random variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.