Abstract

Charge separation plays a crucial role in regulating photochemical properties and therefore warrants consideration in designing photocatalysts. Metal-organic frameworks (MOFs) are emerging as promising candidates for heterogeneous photocatalysis due to their structural designability and tunability of photon absorption. Herein, we report the design of a pyrazole-benzothiadiazole-pyrazole organic molecule bearing a donor-acceptor-donor conjugated π-system for fast charge separation. Further attempts to integrate such a photosensitizer into MOFs afford a more effective heterogeneous photocatalyst (JNU-204). Under visible-light irradiation, three aerobic oxidation reactions involving different oxygenation pathways were achieved on JNU-204. Recycling experiments were conducted to demonstrate the stability and reusability of JNU-204 as a robust heterogeneous photocatalyst. Furthermore, we illustrate its applications in the facile synthesis of pyrrolo[2,1-a]isoquinoline-containing heterocycles, core skeletons of a family of marine natural products. JNU-204 is an exemplary MOF platform with good photon absorption, suitable band gap, fast charge separation, and extraordinary chemical stability for proceeding with aerobic oxidation reactions under visible-light irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call