Abstract

Along with cartography science and technology development, data acquisition through aeronautical laser scanning systems has been developing. This is an essential and detailed data source for database construction, mapping, and city 3D modeling,... City 3D modeling requires processing many types of data, at which point cloud data processing and classification play an essential role in creating input data sources for the model. However, the processing and classification of point cloud data mainly depend on commercial software with very high costs; moreover, the algorithms and parameters of commercial software are locked. That makes it impossible for the user to intervene to improve product accuracy. Therefore, building a program to automatically classify point cloud data into different geographical objects helps us master data processing technology for creating 3D models. It makes an important contribution to building and developing smart cities. The article introduces the step-by-step classification of LiDAR point cloud data and the process of automatically building a program to classify point cloud data based on Visual Studio.Net language. The result is a bilingual program automatically classifying point cloud data (Vietnamese - English). The program can read and fully deploy algorithms to process LiDAR point cloud data containing information with four color bands (red, green, blue, and near-infrared). The primary processing is based on proposed classification steps and thresholds for point cloud data classification into eight feature classes, including hydrology, solar land, traffic, low plants, medium plants, high plants, houses, and other objects, to establish 3D city models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.