Abstract
Objective. We proposed an experimental approach to build a precise machine-specific beam delivery time (BDT) prediction and delivery sequence model for standard, volumetric, and layer repainting delivery based on a cyclotron accelerator system. Approach. Test fields and clinical treatment plans’ log files were used to experimentally derive three main beam delivery parameters that impacted BDT: energy layer switching time (ELST), spot switching time, and spot drill time. This derived machine-specific model includes standard, volumetric, and layer repainting delivery sequences. A total of 103 clinical treatment fields were used to validate the model. Main results. The study found that ELST is not stochastic in this specific machine. Instead, it is actually the data transmission time or energy selection time, whichever takes longer. The validation showed that the accuracy of each component of the BDT matches well between machine log files and the model’s prediction. The average total BDT was about (−0.74 ± 3.33)% difference compared to the actual treatment log files, which is improved from the current commercial proton therapy system’s prediction (67.22%±26.19%). Significance. An accurate BDT prediction and delivery sequence model was established for an cyclotron-based proton therapy system IBA ProteusPLUS®. Most institutions could adopt this method to build a machine-specific model for their own proton system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.