Abstract

PurposeSediment fingerprinting of fluvial targets has proven useful to guide conservation management and prioritize sediment sources for Federal and State supported programs in the United States. However, the collection and analysis of source samples can make these studies unaffordable, especially when needed for multiple drainage basins. We investigate the potential use of source samples from a basin with similar physiography (using samples from one of a “pair” to evaluate samples from the other) or combined from multiple basins (a “library”). MethodsSource samples from eight basins across six ecoregions were harvested from existing, published studies. Individual source samples were fingerprinted using a mixing model derived from source samples from other basins. The ability to identify source category was evaluated both as part of source verification and by classifying source samples as “targets.” ResultsApproximately half of cropland samples were identified as targets, both as pairs and with the multi-basin source dataset, indicating that cropland samples could be shared for basins in similar ecoregions and be combined for larger stream systems. Streambank samples were better identified with the multi-basin analysis relative to the pairs, and those from mixed land-use basins improved this differentiation except for samples from basins with a dominant land-use type. Inconsistent identification of pasture samples highlighted the need for local samples. Inconsistent identification of forest samples indicated that upland- and riparian-forest samples are distinct. Road samples were identified as both sources and targets, and other source types were rarely apportioned as road: these may have the best potential to supplement local source samples. This source-sample library was then used to improve the accuracy of sediment-source apportionment for a previously studied basin. ConclusionUltimately, the source verification process already used in individual basin studies to evaluate the accuracy of sediment-fingerprinting apportionments was useful for determining how to supplement local source samples with those from other basins. This study shows that supplementing local source samples with those from basins with similar physiography has the potential to both improve fingerprinting accuracy and decrease the cost of this type of study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.