Abstract

"Doubly-special relativity" (DSR), the idea of a Planck-scale Minkowski limit that is still a relativistic theory, but with both the Planck scale and the speed-of-light scale as nontrivial relativistic invariants, was proposed as a physics intuition for several scenarios which may arise in the study of the quantum-gravity problem, but most DSR studies focused exclusively on the search of formalisms for the description of a specific example of such a Minkowski limit. A novel contribution to the DSR physics intuition came from a recent paper by Smolin suggesting that the emergence of the Planck scale as a second nontrivial relativistic invariant might be inevitable in quantum gravity, relying only on some rather robust expectations concerning the semiclassical approximation of quantum gravity. Here, we attempt to strengthen Smolin's argument by observing that an analysis of some independently-proposed Planck-scale particle-localization limits, such as the "Generalized Uncertainty Principle" often attributed to string theory in the literature, also suggests that the emergence of a DSR Minkowski limit might be inevitable. We discuss a possible link between this observation and recent results on logarithmic corrections to the entropy-area black-hole formula, and observe that both the analysis reported here and Smolin's analysis appear to suggest that the examples of DSR Minkowski limits for which a formalism has been sought in the literature might not be sufficiently general. We also stress that, as we now contemplate the hypothesis of a DSR Minkowski limit, there is an additional challenge for those in the quantum-gravity community attributing to the Planck length the role of "fundamental length scale."

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.