Abstract

Additive manufacturing (AM) has enabled the fabrication of artifacts with unprecedented geometric and material complexity. The focus of this paper is on the build the optimization of short fiber reinforced polymers (SFRP) AM components. Specifically, we consider optimization of the build direction, topology, and fiber orientation of SFRP components. All three factors have a significant impact on the functional performance of the printed part. While significant progress has been made on optimizing these independently, the objective of this paper is to consider all three factors simultaneously and explore their interdependency, within the context of thermal applications. Towards this end, the underlying design parameters are identified, appropriate sensitivity equations are derived, and a formal optimization problem is posed as an extension to the popular Solid Isotropic Material with Penalization (SIMP). Results from several numerical experiments are presented, highlighting the impact of build direction, topology, and fiber orientation on the performance of SFRP components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.