Abstract

Control of deposition geometry is critical for repair and fabrication of complex components through directed energy deposition (DED). However, current limited sensing technology is often one of the bottlenecks that make it difficult to implement a real-time, measurement-feedback control of build geometry. Hence, this paper proposes to implement the control trajectories from a model-based, simulated-output feedback controller (where the controller uses simulated rather than measured outputs for feedback) as a feed-forward controller in a real DED process. We illustrate the effectiveness of such feed-forward implementation of a model-based, simulated-output feedback controller in the height control of a L-shaped structure via varying laser power in a DED process. Experimental validation shows that by applying the proposed feed-forward controller for laser power, the resulting build has (30%–50%) increased accuracy in achieving the target build height than applying laser with constant power or experience-based, hatch-dependent laser power. Results in this paper indicate that applying a simulated-output feedback controller could be a practical alternative for the control of DED (or other additive manufacturing processes) before the sensing technologies are matured enough to support real-time, measurement-feedback controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.