Abstract
Current additive manufacturing processes mostly accustomed with mono-material process plan algorithm to build object layer by layer. However, building a multi-material or heterogeneous object with an additive manufacturing system is fairly new but emerging concept. Unlike mono-material object, heterogeneous object contains multiple features or inhomogeneous architecture and can be decomposed into two dimensional heterogeneous layers with islands where each island represents associated feature’s properties. The material deposition path-plan in such multi-feature/multi-contour layers requires more resources and may affect the part integrity, quality, and build time. A novel framework is presented in this paper to determine the optimum build direction for heterogeneous object by differentiating the slice based on the resources requirement. Slices are bundled based on the heterogeneity and the effect of build directions are quantified considering the feature characteristics and manufacturing attributes. The proposed methodology is illustrated by examples with 50% or more homogeneous slices along the optimum build direction. The outcome would certainly benefit the process plan for multi-material additive manufacturing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.