Abstract

Bug tracking systems, which help to track the reported software bugs, have been widely used in software development and maintenance. In these systems, recognizing relevant source files among a large number of source files for a given bug report is a time-consuming and labor-intensive task for software developers. To tackle this problem, information retrieval methods have been widely used to capture either the textual similarities or the semantic similarities between bug reports and source files. However, these two types of similarities are usually considered separately and the historical bug fixings are largely ignored by the existing methods. In this paper, we propose a supervised topic modeling method (STMLOCATOR) for automatically locating the relevant source files for a given bug report. In particular, the proposed model is built upon three key observations. First, supervised modeling can effectively make use of the existing fixing histories. Second, certain words in bug reports tend to appear multiple times in their relevant source files. Third, longer source files tend to have more bugs. By integrating the above three observations, the proposed STMLOCATOR utilizes historical fixings in a supervised way and learns both the textual similarities and semantic similarities between bug reports and source files. We further consider a special type of bug reports with stack-traces in bug reports, and propose a variant of STMLOCATOR to tailor for such bug reports. Experimental evaluations on three real data sets demonstrate that the proposed STMLOCATOR can achieve up to 23.6% improvement in terms of prediction accuracy over its best competitors, and scales linearly with the size of the data. Moreover, the proposed variant further improves STMLOCATOR by up to 76.2% on those bug reports with stack-traces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.