Abstract
AbstractThe effect of atmosphere–ocean coupling on intensity changes of tropical cyclones (TCs) under global warming was examined using a regional high‐resolution three‐dimensional atmosphere–ocean coupled model. A storyline event attribution approach was applied to four historical intense TCs in the western North Pacific. The results indicate that atmosphere–ocean coupling buffers TC intensification as global warming progresses. This buffering effect increased as storms traveled northward. Moreover, the effect intensified as warming progressed, because reductions in sea surface temperature induced by the storm increased as the storm strengthened in future warmer climates. The magnitude of the buffering effect depended on the storm's size and translation speed; a large, slow‐moving storm had significant resilience against global warming, whereas a compact, fast‐moving storm was sensitive to global warming. A high‐resolution atmosphere–ocean coupled model is important for more reliable future projections of TC intensity under the changing climate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.