Abstract

Calcium oscillations and waves induce depolarization in cardiac cells which are believed to cause life-threathening arrhythimas. In this work, we study the conditions for the appearance of calcium oscillations in both a detailed subcellular model of calcium dynamics and a minimal model that takes into account just the minimal ingredients of the calcium toolkit. To avoid the effects of homeostatic changes and the interaction with the action potential we consider the somewhat artificial condition of a cell without pacing and with no calcium exchange with the extracellular medium. Both the full subcellular model and the minimal model present the same scenarios depending on the calcium load: two stationary states, one with closed ryanodine receptors (RyR) and most calcium in the cell stored in the sarcoplasmic reticulum (SR), and another, with open RyRs and a depleted SR. In between, calcium oscillations may appear. The robustness of these oscillations is determined by the amount of calsequestrin (CSQ). The lack of this buffer in the SR enhances the appearance of oscillations. The minimal model allows us to relate the stability of the oscillating state to the nullcline structure of the system, and find that its range of existence is bounded by a homoclinic and a Hopf bifurcation, resulting in a sudden transition to the oscillatory regime as the cell calcium load is increased. Adding a small amount of noise to the RyR behavior increases the parameter region where oscillations appear and provides a gradual transition from the resting state to the oscillatory regime, as observed in the subcellular model and experimentally.

Highlights

  • Cardiovascular diseases represent one of the main causes of death worldwide [1]

  • Dysregulations in calcium handling have been associated with the appearance of arrhythmias

  • The onset of rapid arrhythmias can be due to a large variety of factors [3], including changes in the properties of cardiac tissue [4], often arrhythmias are triggered by spontaneous intracellular calcium releases [5, 6]

Read more

Summary

Introduction

Mortality is related to the appearance of rapid cardiac rhythms, such as tachycardia and fibrillation, that result in contractibility loss, reducing cardiac output and eventually leading to sudden cardiac death [2]. Calcium is responsible for regulating cell contraction, but it modulates several currents that affect the action potential. Spontaneous calcium release in the interbeat interval, during diastole, may elicit extra action potential depolarizations and excitation waves, potentially disrupting normal wave propagation. This sometimes leads to the formation of rotors (functional reentry) and eventually a disordered electrical state characteristic of fibrillation [7,8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.