Abstract

The presence of black carbon (BC) in soil drastically reduced the mineralisation of 14 C -phenanthrene and its extractability by hydroxypropyl- β -cyclodextrin (HPCD) extractions. This study also tested the effects of pH on the HPCD extraction of 14 C -phenanthrene in soils with BC. Extractions using 60 mM HPCD solutions prepared in deionised water (pH 5.89) and phosphate buffers (pH 7 and 8) were conducted on 14 C -phenanthrene-spiked soils amended with three different types of BC (1% dry weight) after 1, 25, and 50 d of ageing. Biodegradation assays using a Pseudomonas sp. strain were also carried out. Results showed that after 1 and 25 d, HPCD at pH 7 extracted significantly more 14 C -phenanthrene ( p 0.05 ) amounts of phenanthrene compared to the un-buffered solution. At 50 d, HPCD at pH 8 generally extracted more 14 C -phenanthrene from all treatments. It was proposed that higher pH promoted the dissolution of soil organic matter (SOM), leading to a greater solubility of phenanthrene in the solvent phase and enhancing the extractive capability of HPCD solutions. Although correlations between extractability and biodegradability of 14 C -phenanthrene in BC-amended soils were poor, increasing pH was demonstrated a viable approach to enhancing HPCD extractive capability for the 14 C -PAH from soil with BC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call