Abstract
We develop a new technique called buffer merging for reducing memory requirements of synchronous dataflow (SDF) specifications. SDF has proven to be an attractive model for specifying DSP systems, and is used in many commercial tools like System Canvas, SPW, and Cocentric. Good synthesis from an SDF specification depends crucially on scheduling, and memory is an important metric for generating efficient schedules. Previous techniques on memory minimization have either not considered buffer sharing at all, or have done so at a fairly coarse level (the meaning of this will be made more precise in the article). In this article, we develop a buffer overlaying strategy that works at the level of an input/output edge pair of an actor. It works by algebraically encapsulating the lifetimes of the tokens on the input/output edge pair, and determines the maximum amount of the input buffer space that can be reused by the output. We develop the mathematical basis for performing merging operations, and develop several algorithms and heuristics for using the merging technique for generating efficient implementations. We show improvements of up to 48% over previous techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Design Automation of Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.