Abstract

We explore in this work the use of Cu as a cathode material in organic light-emitting devices (OLEDs) and find a dual electron–injection enhancement mechanism derived from the LiF layer. Different from what observed previously in Ag- and Au-cathode devices, the LiF buffer layer in the Cu-cathode OLEDs starts to play its role in performance improvement when it is much thinner than 3nm, the optimal value of buffer thickness, and in the case of optimal thickness, the device exhibits excellent performance comparable to conventional Al-cathode device. The phenomenon observed is ascribed to enhanced electron injection as a result of combined effect of interfacial reaction and tunneling barrier reduction mechanism: while chemical reaction plays a key role at the very beginning of interface formation, tunneling dominates in the subsequent stage leading to the tremendous improvement of the characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call