Abstract
In the perspective of Darwinian hydrology, Budyko hypotheses can be the foundation of approaches for developing models. Numerous Budyko-type models meeting established boundary conditions (water and energy limits) have been developed based on the Budyko hypothesis on the long-term-average annual mass and energy balance. Some of these models are grounded on empirical bases, while others have been formulated on sophisticated mathematical developments. We analyze the basic hypotheses underlying some Budyko-type models; we first describe some published models and then examine their underlying hypotheses in a hydrologically intuitive space (precipitation versus runoff). The analyses show that the models studied are a consequence of assuming that two parallel straight lines (of unit slope) of different intercepts are indeed equal (proportionality hypothesis). This hypothesis gives rise to different Budyko-type models that, although mathematically correct and meeting the limits (partially) related to the Budyko hypotheses, do not yield any information about what happens between those limits. To overcome the extreme energy limit, an expolinear model is introduced.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.