Abstract

BackgroundWe know little about the budget impact of integrating robotic exoskeleton over-ground training into therapy services for locomotor training. The purpose of this study was to estimate the budget impact of adding robotic exoskeleton over-ground training to existing locomotor training strategies in the rehabilitation of people with spinal cord injury.MethodsA Budget Impact Analysis (BIA) was conducted using data provided by four Spinal Cord Injury (SCI) Model Systems rehabilitation hospitals. Hospitals provided estimates of therapy utilization and costs about people with spinal cord injury who participated in locomotor training in the calendar year 2017. Interventions were standard of care walking training including body-weight supported treadmill training, overground training, stationary robotic systems (i.e., treadmill-based robotic gait orthoses), and overground robotic exoskeleton training. The main outcome measures included device costs, training costs for personnel to use the device, human capital costs of locomotor training, device demand, and the number of training sessions per person with SCI.ResultsRobotic exoskeletons for over-ground training decreased hospital costs associated with delivering locomotor training in the base case analysis. This analysis assumed no difference in intervention effectiveness across locomotor training strategies. Providing robotic exoskeleton overground training for 10% of locomotor training sessions over the course of the year (range 226–397 sessions) results in decreased annual locomotor training costs (i.e., net savings) between $1114 to $4784 per annum. The base case shows small savings that are sensitive to parameters of the BIA model which were tested in one-way sensitivity analyses, scenarios analyses, and probability sensitivity analyses. The base case scenario was more sensitive to clinical utilization parameters (e.g., how often devices sit idle and the substitution of high cost training) than device-specific parameters (e.g., robotic exoskeleton device cost or device life). Probabilistic sensitivity analysis simultaneously considered human capital cost, device cost, and locomotor device substitution. With probabilistic sensitivity analysis, the introduction of a robotic exoskeleton only remained cost saving for one facility.ConclusionsProviding robotic exoskeleton for over-ground training was associated with lower costs for the locomotor training of people with SCI in the base case analyses. The analysis was sensitive to parameter assumptions.

Highlights

  • We know little about the budget impact of integrating robotic exoskeleton over-ground training into therapy services for locomotor training

  • In the base case scenario for all hospital systems, offering robotic therapy (RT)-exo for locomotor training decreased hospital costs associated with delivering locomotor training (Tables 3 & 4)

  • Providing RT-Exo for 10% of locomotor training sessions over the course of the year results in decreased annual costs associated with locomotor training; these savings ranged from $649 (Facility D) to $4784 (Facility B) per annum

Read more

Summary

Introduction

We know little about the budget impact of integrating robotic exoskeleton over-ground training into therapy services for locomotor training. The purpose of this study was to estimate the budget impact of adding robotic exoskeleton over-ground training to existing locomotor training strategies in the rehabilitation of people with spinal cord injury. The average age of SCI onset is 43 years, affording the opportunity to resume active community involvement and employment. The inability to stand and walk limits community involvement and employment but these functional limitations impose significant secondary health conditions. These conditions include depression, pressure ulcers, severe spasticity, pain, limited joint range of motion, contractures, muscle atrophy, bone loss, and impaired digestive, respiratory, renal, and cardiovascular function [2]. In addition to the physical burden, spinal cord injury accounts for significant health care costs ranging from $368,562 to $1,129,302 in first year costs and $44,766 to $196,107 in annual health care costs depending on the severity of injury [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.