Abstract

In the Mobile crowdsensing (MCS) system, the task allocation problem is a crucial problem. In this paper, we focus on the task allocation problem for hybrid participants with a budget-constrained MCS system. There are two types of participants: mobile participants and static participants. Mobile participants have low cost, large numbers, and flexibility. However, most of the sensing data they submitted are of low quality. On the other hand, static participants, such as city cameras, roadside infrastructure, have high-quality sensing data. Despite the benefit of high quality, static participants have less coverage and high cost. Given a budget, the problem is how to assign the task to the two types of participants, such that the social welfare is maximized. To solve the problem, we propose a reverse auction-based task allocation method (ORA) to select winning bids round by round. Then, a Shapley value based online algorithm (OAA) is proposed to ensure the task is finished. Moreover, we consider the different types of participants to have a different probability to finish tasks. We exploit the semi-Markov model to calculate the probability that participants finished tasks. We prove that the proposed task allocation method has truthfulness and individual rationality. We conduct extensive experiments to evaluate the performance of our system, and the evaluation results demonstrate the remarkable effect of the proposed task allocation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call