Abstract

Airway epithelial barrier dysfunction is increasingly recognized as a key feature of asthma and other lung diseases. Respiratory viruses are responsible for a large fraction of asthma exacerbations, and are particularly potent at disrupting epithelial barrier function through pattern recognition receptor engagement leading to tight junction dysfunction. Although different mechanisms of barrier dysfunction have been described, relatively little is known about whether barrier integrity can be promoted to limit disease. Here, we tested three classes of drugs commonly prescribed to treat asthma for their ability to promote barrier function using a cell culture model of virus-induced airway epithelial barrier disruption. Specifically, we studied the corticosteroid budesonide, the long acting beta-agonist formoterol, and the leukotriene receptor antagonist montelukast for their ability to promote barrier integrity of a monolayer of human bronchial epithelial cells (16HBE) before exposure to the viral mimetic double-stranded RNA. Of the three, only budesonide treatment limited transepithelial electrical resistance and small molecule permeability (4 kDa FITC-dextran flux). Next, we used a mouse model of acute dsRNA challenge that induces transient epithelial barrier disruption in vivo, and studied the effects budesonide when administered prophylactically or therapeutically. We found that budesonide similarly protected against dsRNA-induced airway barrier disruption in the lung, independently of its effects on airway inflammation. Taken together, these data suggest that an under-appreciated effect of inhaled budesonide is to maintain or promote airway epithelial barrier integrity during respiratory viral infections.

Highlights

  • Airway epithelial cells form a physical barrier to the outside world

  • We assessed the ability of three asthma medications to prevent/promote barrier recovery following polyI:C-mediated barrier disruption. 16HBE cells were treated with budesonide, formoterol or montelukast 18hrs prior to 0.5μg/ml polyI:C challenge

  • Using double stranded RNA (dsRNA) as a model of acute inflammation and barrier disruption, we show that budesonide, but not formoterol or montelukast, is able to promote barrier integrity in both a human bronchial epithelial cell monolayer, as well as an in vivo mouse model

Read more

Summary

Introduction

Airway epithelial cells form a physical barrier to the outside world. They are among the first cells to encounter inhaled pathogens, and contribute to airway inflammation by secreting proinflammatory cytokines and other mediators [1,2,3].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call