Abstract

Inflammation and cellular senescence (also called inflammaging) are involved in the pathogenesis of premature lung aging, a key driver of chronic obstructive pulmonary disease (COPD). Downregulation of histone deacetylases and FoxO3 expression, activation of the ERK 1/2 pathway and IL-8 increase are hallmarks of lung inflammaging. The effects of Budesonide (BUD), Aclidinium (ACL) and Formoterol (FO) on lung inflammaging are unknown. This study was aimed to assess the effects of BUD, ACL and FO in bronchial epithelial cells exposed to cigarette smoke extract (CSE) by evaluating: a) Expression of TLR4 and survivin and LPS binding by flow cytometry; b) expression of HDAC2, HDAC3, SIRT1 and FoxO3 and activation of the ERK 1/2 pathway by western blot; c) IL-8 mRNA levels and release by Real Time-PCR and ELISA, respectively. Reported results show that CSE increased TLR4 and survivin, LPS binding, ERK 1/2 activation, IL-8 release and mRNA levels but decreased SIRT1, HDAC2, HDAC3 and FoxO3 nuclear expression. Combined therapy with BUD, ACL and FO counteracted the effects of CSE on LPS binding, FoxO3 nuclear expression, ERK 1/2 activation, survivin and IL-8 release and mRNA levels. These findings suggest a new role of combination therapy with BUD, ACL and FO in counteracting inflammaging processes induced by cigarette smoke exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call