Abstract
A substantial fraction of metabolic features remains undetermined in mass spectrometry (MS)-based metabolomics, and molecular formula annotation is the starting point for unraveling their chemical identities. Here we present bottom-up tandem MS (MS/MS) interrogation, a method for de novo formula annotation. Our approach prioritizes MS/MS-explainable formula candidates, implements machine-learned ranking and offers false discovery rate estimation. Compared with the mathematically exhaustive formula enumeration, our approach shrinks the formula candidate space by 42.8% on average. Method benchmarking on annotation accuracy was systematically carried out on reference MS/MS libraries and real metabolomics datasets. Applied on 155,321 recurrent unidentified spectra, our approach confidently annotated >5,000 novel molecular formulae absent from chemical databases. Beyond the level of individual metabolic features, we combined bottom-up MS/MS interrogation with global optimization to refine formula annotations while revealing peak interrelationships. This approach allowed the systematic annotation of 37 fatty acid amide molecules in human fecal data. All bioinformatics pipelines are available in a standalone software, BUDDY ( https://github.com/HuanLab/BUDDY ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.