Abstract

Stalling of replication forks at lesions is a serious threat to genomic integrity and cell viability. Cells have developed a variety of pathways that allow continuation of synthesis, including translesion synthesis, postreplication repair and homologous recombination. We have devised a sensitive genetic system for detection of sister chromatid interactions in Saccharomyces cerevisiae. A 266 bp sequence duplication in the KanMX4 module was generated and reversions were scored via G418 resistant colonies. Both 4-NQO induced and spontaneous reversions are strictly dependent on RAD52. Damage-induced reversions are also largely dependent on RAD51. Thus, most damage-induced events require a strand invasion step. Induced reversions were not affected in rev3 mutants and partially reduced in rad30 mutants indicating an involvement of Pol η. In cells lacking Mph1, a member of the FANCM family of DNA helicases, that has been implicated in a pathway for fork reactivation involving homologous recombination, damage-induced events are significantly reduced. Together with the spontaneous mutator phenotype of mph1 mutants this data strongly suggest that Mph1 has an additional function in recombination besides its previously described ability to disrupt D-loops. We propose that Mph1 promotes D-loop formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call