Abstract

Crystalline domains embedded in fluid membrane vesicles are studied by Monte Carlo simulations of dynamically triangulated surfaces and by scaling arguments. A budding transition from a caplike state to a budded shape is observed for increasing spontaneous curvature C0 of the crystalline domain as well as increasing line tension lambda. The location of the budding transition is determined as a function of C0, lambda, and the radius R(A) of the crystalline domain. In contrast to previous theoretical predictions, it is found that budding occurs at a value of the spontaneous curvature C0, that is always a decreasing function of the domain size R(A). Several characteristic scaling regimes are predicted. The distribution of five- and sevenfold disclinations as the budding transition is approached is determined, and the dynamics of the generation of defects is studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.