Abstract
The key to intelligent seed potato cutting technology lies in the accurate and rapid identification of potato bud eyes. Existing detection algorithms suffer from low recognition accuracy and high model complexity, resulting in an increased miss rate. To address these issues, this study proposes a potato bud-eye-detection algorithm based on an improved YOLOv8s. First, by integrating the Faster Neural Network (FasterNet) with the Efficient Multi-scale Attention (EMA) module, a novel Faster Block-EMA network structure is designed to replace the bottleneck components within the C2f module of YOLOv8s. This enhancement improves the model’s feature-extraction capability and computational efficiency for bud detection. Second, this study introduces a weighted bidirectional feature pyramid network (BiFPN) to optimize the neck network, achieving multi-scale fusion of potato bud eye features while significantly reducing the model’s parameters, computation, and size due to its flexible network topology. Finally, the Efficient Intersection over Union (EIoU) loss function is employed to optimize the bounding box regression process, further enhancing the model’s localization capability. The experimental results show that the improved model achieves a mean average precision (mAP@0.5) of 98.1% with a model size of only 11.1 MB. Compared to the baseline model, the mAP@0.5 and mAP@0.5:0.95 were improved by 3.1% and 4.5%, respectively, while the model’s parameters, size, and computation were reduced by 49.1%, 48.1%, and 31.1%, respectively. Additionally, compared to the YOLOv3, YOLOv5s, YOLOv6s, YOLOv7-tiny, and YOLOv8m algorithms, the mAP@0.5 was improved by 4.6%, 3.7%, 5.6%, 5.2%, and 3.3%, respectively. Therefore, the proposed algorithm not only significantly enhances the detection accuracy, but also greatly reduces the model complexity, providing essential technical support for the application and deployment of intelligent potato cutting technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.