Abstract

Ustilago maydis is a dimorphic Basidiomycete fungus with a yeast-like form and a hyphal form. Here we present a comprehensive analysis of bud formation and the actin and microtubule cytoskeletons of the yeast-like form during the cell cycle. We show that bud morphogenesis entails a series of shape changes, initially a tubular or conical structure, culminating in a cigar-shaped cell connected to the mother cell by a narrow neck. Labelling of cells with concanavalin A demonstrated that growth occurs at bud tip. Indirect immunofluorescence studies revealed that the actin cytoskeleton consists of patches and cables that polarize to the presumptive bud site and the bud tip and an actin ring that forms at the neck region. Because the bud tip corresponds to the site of active cell wall growth, we hypothesize that actin is involved in secretion of cell wall components. The microtubule cytoskeleton has recently been shown to consist of a cytoplasmic network during interphase that disassembles at mitosis when a spindle and astral microtubules are formed. We have carried out studies of U. maydis cells synchronized by the microtubule-depolymerizing drug thiabendazole which allow us to construct a temporal sequence of steps in spindle formation and spindle elongation during the cell cycle. These studies suggest that astral microtubules may be involved in early stages of spindle orientation and migration of the nucleus into the bud and that the spindle pole bodies may be involved in reestablishment of the cytoplasmic microtubule network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call