Abstract

The development of electronic gadgets has become of great relevance for the detection of fraud in beverages such as wine, due to the addition of adulterants that bring risks to human health as well as economic impacts. Thus, the present study aims to apply a buckypaper (BP) based on functionalized multiwalled carbon nanotubes (MWCNTs)/cellulose fibers as a sensor for the analysis of Port wine intentionally adulterated with 5 vol.% and 10 vol.% distilled water and ethyl alcohol. The morphology of BP characterized by scanning electron microscopy indicates the formation of agglomerates of random MWCNTs dispersed on the surface and between the fibers of the cellulosic paper. The analysis of the response of the film through the normalized relative resistance change showed a higher response of 0.75 ± 0.16 for adulteration with 10 vol.% of water and a mean response time of 10.0 ± 3.60 s and recovery of approximately 17.2 min for adulteration with 5 vol.% alcohol. Principal component analysis (PCA) was used in data processing to evaluate the ability of BP to recognize and discriminate analytes and adulterating agents, allowing the investigation of its potential application as a low-cost and easy-to-handle multisensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.