Abstract

Buckwheat sprouts contain various bioactive compounds including rutin which have a number of biological activities. We have previously shown that buckwheat sprouts (TBWE) treated with methyl jasmonate (MeJA) significantly increased the amount of phenolics and the antioxidant activity. The aim of this study was to demonstrate the effect of TBWE on anti-adipogenesis and pro-oxidant enzyme in 3T3-L1 adipocytes. We also evaluated the anti-oxidative activity of TBWE in adipocytes by using the nitroblue tetrazolium assay. Our data showed that TBWE markedly inhibited adipocyte differentiation and ROS production in 3T3-L1 cells compared with control groups. Moreover, TBWE has strongly shown the inhibition of adipogenic transcription factor as well as pro-oxidant enzymes. Together, we demonstrate that the MeJA treatment significantly increased the amount of phenolic compound, resulting in the suppression of adipogenesis and ROS production in the 3T3-L1 cells. These findings indicate that TBWE has the potential for anti-adipogenesis activity with anti-oxidative properties.

Highlights

  • Obesity has emerged as a metabolic disorder associated with cardiovascular disease and type 2 diabetes mellitus [1,2]

  • The phenolic compounds are an important group of secondary metabolites, which are synthesized by plants and physical processing as a result of enhance to antioxidant activity and resistant stress [19,20]

  • According to our observations suggest that the inhibition of adipocyte differentiation has been enhanced mainly due to methyl jasmonate (MeJA) treatment on NBWE, which probably allows the improvement of biopharmaceutical activities, including anti-adipogenesis in that buckwheat sprouts (TBWE)

Read more

Summary

Introduction

Obesity has emerged as a metabolic disorder associated with cardiovascular disease and type 2 diabetes mellitus [1,2]. Obesity is characterized by an increased storage of triacylglycerol in adipose tissues. Cellular and molecular studies on the development of obesity have shown that increases in the number and size of adipocytes can be triggered by dietary factors [3]. The production of reactive oxygen species (ROS) has recently been implicated as an important contributor to the pathogenesis of obesity-associated insulin resistance, and the accumulation of body fat in obese individuals leads to the elevation of systemic oxidative stress [5]. A number of studies have demonstrated potent inhibition of oxidative stress with certain antioxidants and suppression of adipocyte developments with associated nitric oxide synthase and NADPH oxidase (NOX) protection under in vitro conditions [6,7]. Using bioactive compounds to control the expression of adipocyte makers, ROS related genes and NOX would be important in the prevention and intervention of adipogenesis

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.