Abstract
AbstractThis paper presents numerical simulations on the behavior of thin‐walled steel tubular bridge piers of box sections under cyclic lateral loading in the presence of constant axial compression loads, using three‐dimensional finite element analysis adopted in commercial computer software ABAQUS. The analysis and experimental results are compared to show how the adopted material models, such as elastic perfectly plastic (EPP), kinematic hardening (KH), and isotropic hardening (ISO) material models are effective and reliable for capacity prediction and cyclic behavior evaluation. The effects of cyclic lateral loading on the hysteresis behavior of the thin‐walled steel tubular bridge piers of box sections have been evaluated by analyzing the hysteresis curve, envelope curve, stiffness, and strength degradation characteristics, considering the interaction of local buckling and flexural buckling. In contrast to the ISO and EPP material models, the analysis results compare reasonably well with test results using the KH material model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.