Abstract

Buckling-restrained braces (BRBs) have received considerable attention in seismic design of various types of structures. Conventional BRBs are composed of steel core and surrounding steel tube filled with concrete. Eliminating the steel tube can be advantageous to BRB. In this study the idea of replacing the steel tube by CFRP layers in BRBs is proposed. The advantages of this type of BRB are mentioned, and its design criteria are introduced. The construction procedure of two BRB specimens is described. The specimens are uniaxially tested based on moderate, and severe earthquake levels and the performance of the specimens is investigated. The backbone curves resulted from the hysteresis curve are presented for the design proposes. The results of this study show that CFRP layers can effectively provide the expected performance of the encasing, and the proposed BRB can be considered a viable alternative to the conventional BRBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.