Abstract

Buckling nanopatterns of monoatomic layer 2D materials on metal substrates attract significant attention due to their rich interface morphology affecting electronic applications. An experimental–theoretical study of a 2D boron–nitrogen–carbon (B x /2N x /2C1−x ) alloy on a Ru(0001) surface is conducted and a profound relation between the composition x and the degree of buckling is discovered. Experimentally, real carbon–boron–nitrogen alloys on the Ru(0001) surface are demonstrated and various morphologies of pure and mixed compounds are shown. Density functional theory calculations are further carried out using the supercells of graphene, hexagonal boron nitride (h‐BN), and random BNC on Ru(0001), as well as Monte Carlo simulations for elucidating the kinetics of their growth. The results show that unlike pure compounds (h‐BN or C), the carbon–boron–nitrogen mix on Ru(0001) mostly exists in an uncorrugated form, thus greatly improving the interface contact. The likely cause of the diminished corrugation is a softening of bond angular interactions in the alloy relative to the pure phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.