Abstract

Due to the non-uniform in-plane stress distribution, variable-stiffness panel with curvilinear fiber paths is a promising structural concept for cutout reinforcement of composite structures under axial compression, due to the more diverse tailorability opportunities than simply choosing the best straight stacking sequence. However, traditional representation methods of curvilinear fiber path are usually not flexible for cutout reinforcement. In this study, the flow field function containing a uniform field and several vortex fields is utilized to represent the fiber path due to its inherent non-intersect and orthotropic features, and a bi-level optimization framework of variable-stiffness panels considering manufacturing constraints is then proposed. A typical rectangular composite panel with multiple cutouts is established to demonstrate the advantage of proposed framework by comparison with other fiber path functions. Results indicate that the flow fiber path only needs few variables to finely represent the fiber path, which can provide satisfying and manufacturable fiber paths by combination use of curvature constraint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.