Abstract

The buckling strengths of fiber-composite laminate shells with a given material system are maximized with respect to fiber orientations using a sequential linear programming method together with a simple move-limit strategy. While a modified Riks nonlinear solution algorithm is utilized to analyse the buckling and postbuckling behaviour of composite shells, both linear and nonlinear in-plane shear formulations are employed to form the finite-element constitutive matrix for fiber-composite laminae. Results of the optimization study for simply supported composite cylindrical shells using both linear and nonlinear in-plane shear formulations are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call