Abstract
Abstract Solution of the buckling problem for the CCFF orthotropic plate subjected to in-plane pure bending is presented. The two parallel clamped edges of the plate are loaded by linearly distributed in-plane loads statically equivalent to the in-plane bending moments. The problem is solved using method of lines for partial differential equations and Galerkin’s method. The buckling problems are solved for isotropic, orthotropic and multilayered CFRP composite plates with various aspect ratios. Results of calculations of critical loads are compared with those based on finite-element modelling and analyses. The comparisons demonstrate efficiency of the proposed approach to the buckling analysis of composite CCFF plates with various dimensional and stiffness parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.