Abstract
ABSTRACTA complex finite strip method was used to study the buckling of functionally graded plates (FGPs) under thermal and mechanical (longitudinal, transverse, and shear in-plane) loading. The mechanical characteristics of FGPs were assumed to vary through the thickness, according to power law distribution. The nonlinear temperature distribution in the direction of the plate thickness was assumed according to thermal conduction steady state conditions. In complex finite strip method, the polynomial Hermitian functions were assumed in the transverse direction and the complex exponential functions were used in the longitudinal direction to evaluate the standard and geometric stiffness matrices that have the ability of calculating the critical shear stress in contrast to trigonometric shape functions. The solution was obtained by the minimization of the total potential energy and solving the corresponding eigenvalue problem. In addition, numerical results for FGPs with different boundary conditions were presented and compared with those available in the literature and the interaction curves of mechanical and thermal buckling capacity of FGPs were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.